An Existence Result for Impulsive Functional Differential Inclusions in Banach Spaces

نویسنده

  • Irene Benedetti
چکیده

We use the topological degree theory for condensing multimaps to present an existence result for impulsive semilinear functional differential inclusions in Banach spaces. Moreover, under some additional assumptions we prove the compactness of the solution set.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On nonresonance impulsive functional nonconvex valued differential inclusions

In this paper a fixed point theorem for contraction multivalued maps due to Covitz and Nadler is used to investigate the existence of solutions for first and second order nonresonance impulsive functional differential inclusions in Banach spaces.

متن کامل

Nonlocal impulsive fractional differential inclusions with fractional sectorial operators on Banach spaces

This paper investigates existence of PC-mild solutions of impulsive fractional differential inclusions with nonlocal conditions when the linear part is a fractional sectorial operators like in Bajlekova (2001) [1] on Banach spaces. We derive two existence results of PC-mild solutions when the values of the semilinear term F is convex as well as another existence result when its values are nonco...

متن کامل

Existence Results for a Second Order Impulsive Neutral Functional Integrodifferential Inclusions in Banach Spaces with Infinite Delay

A fixed point theorem for condensing maps due to Martelli combined with theories of a strongly continuous cosine family of bounded linear operators is used to investigate the existence of solutions to second order impulsive neutral functional integrodifferential inclusions with infinite delay in Banach spaces.

متن کامل

Stochastic differential inclusions of semimonotone type in Hilbert spaces

In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...

متن کامل

Some Uniqueness Results for Impulsive Semilinear Neutral Functional Differential Equations

The Banach contraction principle is used to investigate the existence and uniqueness of solutions for first and second order impulsive semilinear neutral functional differential equations in Banach spaces. 2000 Mathematics Subject Classification: 34A37, 34G20, 34K25.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004